Amino Acid Disorders

Tyrosinemia Type-1 (TYR I)

background

background

Elevated blood tyrosine levels are seen in three inherited disorders of tyrosine metabolism. Tyrosinemia Type I was described in 1957 and is caused by deficiency of fumarylaceto-acetate hydrolase (FAH). While a predominance of patients are of French Canadian or Scandinavian decent, people from other ethnic groups have also been diagnosed. Overall, TYR I is estimated to occur in less than 1 in 100,000 live births but is as common as 1 in 12,500 in French Canadians.

clinical

clinical

TYR I usually presents in the first few months of life with progressive hepatorenal symptoms. Infants exhibit failure-to-thrive, hepatomegaly, liver dysfunction, together with metabolic acidosis and electrolyte disturbances due to renal tubular dysfunction (renal Fanconi syndrome). Diminished biosynthetic function of liver, which results in decreased clotting factors and a bleeding diathesis, often precedes large elevations in serum transaminases. Liver disease progresses to cirrhosis, hepatic failure, and death in undiagnosed patients. At any time, patients may develop acute hepatic crises with ascites, jaundice, and gastrointestinal bleeding. Neurologic episodes of painful paresthesias, weakness, paralysis, and respiratory insufficiency occur. There is a high risk for development of hepatic nodules and hepatocellular carcinoma. Most untreated patients die in infancy or early childhood. Patients with Type I disease do not have intellectual disability.

testing

testing

Tyrosine and succinylacetone are readily measured in a newborn screening dried blood spot using tandem mass spectrometry. Also the Tyr/Cit ratio has been found informative for TYR I. Mild to moderate elevations of tyrosine that decrease and become normal with follow-up testing is consistent with transient tyrosinemia of the newborn. This transient elevation is a pattern associated with liver immaturity or dysfunction.

Tyrosine and succinylacetone are readily measured in a newborn screening dried blood spot using tandem mass spectrometry. Also the Tyr/Cit ratio has been found informative for TYR I. Mild to moderate elevations of tyrosine that decrease and become normal with follow-up testing is consistent with transient tyrosinemia of the newborn. This transient elevation is a pattern associated with liver immaturity or dysfunction.

treatment

treatment

Normalization of the tyrosine level is hastened by dietary supplementation with vitamin C. Patients with Type I disease must be treated aggressively with dietary restriction of tyrosine and phenylalanine, and administration of 2(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC). This drug inhibits 4HPPD and lowers tyrosine metabolites that are responsible for much of the Type I morbidity. Liver transplantation is a cure for patients with Type I disease, providing normal FAH activity.

Because the diagnosis and therapy of tyrosinemia is complex, the pediatrician is advised to manage the patient in close collaboration with a consulting pediatric metabolic disease specialist. It is recommended that parents travel with a letter of treatment guidelines from the patient’s physician.

inheritance

inheritance

This disorder most often follows an autosomal recessive inheritance pattern. With recessive disorders affected patients usually have two copies of a disease gene (or mutation) in order to show symptoms. People with only one copy of the disease gene (called carriers) generally do not show signs or symptoms of the condition but can pass the disease gene to their children. When both parents are carriers of the disease gene for a particular disorder, there is a 25% chance with each pregnancy that they will have a child affected with the disorder.

Source: Newborn Screening Today (2011), PerkinElmer Inc., Waltham MA
This website stores cookies on your computer. These cookies are used to improve our website and provide more personalised services to you.
Close

Cookies

To make this site work properly, we sometimes place small data files called cookies on your device. Most big websites do this too.

1. What are cookies?

A cookie is a small text file that a website saves on your computer or mobile device when you visit the site. It enables the website to remember your actions and preferences (such as login, language, font size and other display preferences) over a period of time, so you don’t have to keep re-entering them whenever you come back to the site or browse from one page to another.

2. How do we use cookies?

A number of our pages use cookies to remember your actions and preferences (such as login, language, font size and other display preferences.)

Also, some videos embedded in our pages use a cookie to anonymously gather statistics on how you got there and what videos you visited.

Enabling these cookies is not strictly necessary for the website to work but it will provide you with a better browsing experience. You can delete or block these cookies, but if you do that some features of this site may not work as intended.

The cookie-related information is not used to identify you personally and the pattern data is fully under our control. These cookies are not used for any purpose other than those described here.

3. How to control cookies

You can control and/or delete cookies as you wish – for details, see aboutcookies.org. You can delete all cookies that are already on your computer and you can set most browsers to prevent them from being placed. If you do this, however, you may have to manually adjust some preferences every time you visit a site and some services and functionalities may not work.

Close